Feasibility of Ann-based Algorithms for Improving the Sensitivity of Tactic Imaging Telescope
نویسنده
چکیده
The sensitivity of a Cherenkov imaging telescope, is strongly dependent on the rejection of the cosmic-ray background events. Some of the methods which have been used to achieve this segregation include methods like Supercuts, Maximum likelihood classifier, Kernel methods, Fractals Wavelets, Factorial Moments, Random Forest etc. While the segregation potential of neural network classifier has been investigated in the past with modest results, a detailed study using some recently incorporated popular algorithms in ANN (e.g. Conjugate Gradient methods, Radial Basis function algorithm, Simulated Annealing technique, Levenberg-Marquardt algorithm etc.) has not been done so far. The main purpose of this paper is to study the gamma / hadron segregation potential of these algorithms, by applying them to the Monte Carlo simulated data for the TACTIC imaging telescope. The results suggest that the algorithms based on Higer order neurons and LevenbergMarquardt method are superior to the widely used Dynamic Supercuts procedure, for rejecting the unwanted hadronic background This paper was given the Best Poster Award at the 25 meeting of the Astronomical Society of India, held at Osmania University, Hyderabad, during February 7-9, 2007.
منابع مشابه
Techno-economic operation optimization of a HRSG in combined cycle power plants based on evolutionary algorithms: A case study of Yazd, Iran
In this research study, energy, exergy and economic analyses is performed for a combined cycle power plant (CCPP) with a supplementary firing system. The purpose of this analyses is to evaluate the economic feasibility of a CCPP by applying an optimization techniques based on Evolutionary algorithms. Actually, the evolutionary algorithms of Firefly, PSO and NSGA-II are applied to minimize the c...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملNondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet
Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کامل